Important role of p38 MAP kinase/NF-kappaB signaling pathway in the sepsis-induced conversion of cardiac myocytes to a proinflammatory phenotype.
نویسندگان
چکیده
Septic plasma can convert murine cardiac myocytes to a proinflammatory phenotype. These myocytes 1) have increased nuclear levels of nuclear factor-kappaB (NF-kappaB), 2) release CXC chemokines, and 3) promote polymorphonuclear neutrophil (PMN) transendothelial migration. The purpose of the present study was to evaluate the role of the mitogen-activated protein (MAP) kinases [p38 MAP kinase, extracellular signal-regulated kinase (ERK) 1/2, and c-Jun NH(2)-terminal kinase (JNK)] as upstream intracellular signaling components involved in this phenomenon. Feces-induced peritonitis (FIP) was employed as a model of sepsis. In vitro, cardiac myocytes were treated with plasma (20%) obtained 6 h after either sham (saline) or FIP procedures. Myocyte supernatants were used for 1) detection of the CXC chemokines (enzyme-linked immunosorbent assay) and 2) assessment of their ability to promote PMN transendothelial migration. In vivo, myocardial PMN accumulation was assessed by measuring myeloperoxidase (MPO) activity and function (dF/dt and heart work). Treatment of cardiac myocytes with septic plasma activated p38 MAP kinase and ERK1/2, but not JNK. Blockade approaches (inhibitors or small-interference RNA) indicated that only p38 MAP kinase played a role in the conversion of the myocytes to a proinflammatory phenotype. Time course studies indicated that phosphorylation of p38 MAP kinase preceded the phosphorylation of NF-kappaB p65. Inhibition of p38 MAP kinase (SB-202190) blocked both NF-kappaB p65 phosphorylation and NF-kappaB nuclear translocation. Confirmatory studies in vivo indicated that FIP resulted in an increase in myocardial MPO activity and dysfunction, events reversed by the inhibitor of p38 MAP kinase. Collectively, these data indicate that the cardiomyocyte p38 MAP kinase/NF-kappaB signaling pathway plays an important role in the sepsis-induced conversion of myocytes to a proinflammatory phenotype.
منابع مشابه
Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells.
Endothelial cells (EC) actively participate in the innate defense against microbial pathogens. Under unfavorable conditions, defense reactions can turn life threatening resulting in sepsis. We therefore studied the so far largely unknown EC reaction patterns to the fungal pathogen Candida albicans, which is a major cause of lethality in septic patients. Using oligonucleotide microarray analysis...
متن کاملCalycosin attenuates dextran sulfate sodium (DSS)-induced experimental colitis
Objective(s):Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immunity. It is an incurable disease that affects millions of people worldwide. Developing new strategies for the treatment of colitis has been a major challenge. Here, we report the effect of calycosin, a plant-derived flavonoid, in successfully managing colitis in murine model. Material and Methods:...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملMyocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase.
OBJECTIVES Myocardial failure, leading to inotrope-unresponsive shock, is the predominant cause of death in meningococcal and other forms of septic shock. Proinflammatory cytokines released in septic shock are known to have myocardial depressant effects. We previously showed that interleukin 6 is a major myocardial depressant factor in children with meningococcal septicemia. In the current stud...
متن کاملPC-SPES: a potent inhibitor of nuclear factor-kappa B rescues mice from lipopolysaccharide-induced septic shock.
Septic shock is the most common cause of death in intensive care units, and no effective treatment is available at present. Lipopolysaccharide (LPS) is the primary mediator of Gram-negative sepsis by inducing the production of macrophage-derived proinflammatory cytokines, in which activation of nuclear factor-kappaB (NF-kappaB) plays an important role. PC-SPES is an eight-herb mixture active ag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008